Nested Lanczos : Implicitly Restarting a Lanczos Algorithm Nested Lanczos : Implicitly Restarting a Lanczos Algorithm
نویسندگان
چکیده
In this text, we present a generalisation of the idea of the Implicitly Restarted Arnoldi method to the nonsymmetric Lanczos algorithm, using the two-sided Gram-Schmidt process or using a full Lanczos tridi-agonalisation. The Implicitly Restarted Lanczos method can be combined with an implicit lter. It can also be used in case of breakdown and ooers an alternative for look-ahead.
منابع مشابه
Implicitly Restarting Lanczos
We show in this text how the idea of the Implicitly Restarted Arnoldi method can be generalised to the non-symmetric Lanczos algorithm, using the two-sided Gram-Schmidt process or using a Lanczos tridiagonalisation. The implicitly restarted Lanczos method can be combined with an implicit lter. It can also be used in case of breakdown and ooers an alternative for look-ahead.
متن کاملThick-Restart Lanczos Method for Symmetric Eigenvalue Problems
For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...
متن کاملA harmonic Lanczos bidiagonalization method for computing interior singular triplets of large matrices
This paper proposes a harmonic Lanczos bidiagonalization method for computing some interior singular triplets of large matrices. It is shown that the approximate singular triplets are convergent if a certain Rayleigh quotient matrix is uniformly bounded and the approximate singular values are well separated. Combining with the implicit restarting technique, we develop an implicitly restarted ha...
متن کاملAugmented Implicitly Restarted Lanczos Bidiagonalization Methods
New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...
متن کاملA Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process
We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapt...
متن کامل